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1. Introduction 
The term chaotic, as it is now widely used, describes 

nonperiodic behavior that arises from the nonlinear 
nature of deterministic systems, not noisy behavior 
arising from random driving forces.’s2 Recent experi- 
ments on diverse nonlinear systems, including fluid 
flows and nonlinear electrical circuits, have revealed 
chaotic dynamics similar to that found in theoretical 
analyses. The intrinsically nonlinear properties of 
chemical kinetics suggest the possibility of chaos in 
chemical  system^,^ but there is a healthy skepticism 
regarding the actual existence of chaos in real well- 
controlled chemical reactions; for example: 

“There certainly are experimental systems which 
exhibit ‘chaotic’ behavior in spite of heroic measures 
to control all recognized parameters. Such behavior 
does not prove that the chaos is inherent in the mech- 
anism itself rather than due to unavoidable stochastic 
 fluctuation^."^ 

“In realistic models of the B. Z. [Belousov-Zhabo- 
tinskii] reaction, numerical computations, however, 
reveal only periodic patterns in both the continuous and 
discrete  model^."^ 

“...it is still an open question whether chaos arising 
from an homogeneous chemical mechanism has been 
obtained experimentally or whether it comes from the 
imperfect control of external features.”6 

Thus, it seems worthwhile to examine carefully the 
experimental and theoretical evidence for the existence 
of chemical chaos-that is the goal of this paper. 

There is no question about the existence of oscilla- 
tions in chemical reactions-many oscillating chemical 
reactions have been discovered in recent yearsa7 
Studies of oscillating reactions have focused primarily 
on the Belousov-Zhabotinskii (BZ) reaction: in which 
bromate ions are reduced in an acidic medium by an 
organic compound (usually malonic acid) with or 
without a catalyst (usually cerous and/or ferrous ions). 
The mechanism of the BZ reaction was elucidatedg in 
1972 and elaborated later,1° and it is generally accepted 
in spite of some recent discussions. Research on rate- 
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determining steps indicated that many of the more than 
20 species identified in the reaction were slaved in their 
time dependence to that of a few species. Hence, it was 
possible to develop a skeletal model, the “Oregonator”, 
which had only three species.“J2 This model (and 
another version with seven species13) was shown to be 
sufficient to reproduce qualitatively the main features 
of the BZ reaction known a decade ago, namely, bista- 
bility, excitability, and oscillations. 

Thus, the theoretical understanding as well as ex- 
perimental knowledge of the BZ reaction was far ahead 
of that for other oscillating chemical reactions. 
Therefore, when Ruelle14 suggested in 1973 that chem- 
ical reactions might exhibit nonperiodic behavior, 
chemists turned naturally to the BZ reaction. The re- 
sults dealing with nonperiodic behavior come primarily 
from studies of this reaction, and this Account will deal 
only with them. 

2. First Qualitative Findings 
Schmitz, Graziani, and Hudson15 were the first to 

report observations of chaos in a chemical reaction. 
They conducted an experiment on the BZ reaction in 
a continuous flow stirred tank reactor, where the flow 

Permanent address: Laboratoire de Physique ThBorique, UniversiG 
de Nice, Parc Valrose, 06034 Nice Cedex, France. 

(1) See, for example, the following monographs: BergB, P.; Pomeau, 
Y.; Vidal, C. Order within Chaos; Wiley: New York, 1986; Hermann: 
Paris, 1984. Thompson, J. M. T.; Stewart, H. B. Nonlinear Dynamics 
and C h s ;  Wiley, New York, 1986. Schuster, H. G. Deterministic Chaos; 
Physik-Verlag: Weinheim, 1984. 

(2) See, for example, the following collections of articles: Cvitanovic, 
P., Ed. Universality in Chaos; Hilger: Bristol, 1984. Holden, A. V., Ed. 
Chaos; Manchester University Press: Manchester, 1986. Bai-Lin, Hao, 
Ed. Chaos; World Scientific: Singapore, 1984. Shlesinger, M. F.; Cawley, 
R.; Saenz, A. W.; Zachary, W., Eds. Perspectives in Nonlinear Dynamics; 
World Scientific: Singapore, 1986. 

(3) For an earlier discussion of chemical chaos, see: Swinney, H. L.; 
Roux, J. C. In Nonequilibrium Dynamics in Chemical Systems; Vidal, 
C., Pacault, A., E&.; Springer: Berlin, 1984; p 124. 

(4) Noyes, R. M. In Stochastic Phenomena and Chaotic Behauior in 
Complex Systems; Schuster, P., Ed.; Springer: Berlin, 1984; p 107. 

(5) Schwartz, I. B. Phys. Lett. A 1984, 102, 25. 
(6) Gray, P.; Scott, S. K. J. Phys. Chem. 1985,89, 22. 
(7) Field, R. J., Burger, M., Eds. Oscillations and Travelling Waves 

(8) See, for example: Field, R. J.; Noyes, R. M. Acc. Chem. Res. 1977, 

(9) Field, R. J.; Koros, E.; Noyes, R. M. J. Am. Chem. SOC. 1972,94, 

(IO) Edelson, D.; Field, R. J.; Noyes, R. M. Int. J. Chem. Kinet. 1975, 

(11) Field, R. J.; Noyes, R. M. J. Chem. Phys. 1974, 60, 1877. 
(12) Field, R. J. J. Chem. Phys. 1975, 63, 2284. 
(13) Showalter, K.; Noyes, R. M.; Bar-Eli, K. J. Chem. Phys. 1978,69, 

in Chemical Systems; Wiley: New York, 1985. 

IO, 214. 

8649. 

7, 417. 

2514. 
(14) Ruelle, D. Trans. N.Y. Acad. Sci. 1973, 35, 66. 
(15) Schmitz, R. A.; Graziani, K. R.; Hudson, J. L. J. Chem. Phys. 

1977,67, 3040. 

0 1987 American Chemical Society 



Vol. 20, 1987 Chemical Chaos: From 

lm i 1 1 1 1 1 1 1 1 1 1 1 1  

t 10min 3 

Figure 1. Time series records of the bromide ion electrode 
potential observed for periodic states that have (a) one large and 
one small oscillation per period and (c) one large and two small 
oscillations per period. (b) A chaotic state observed for conditions 
between those that yielded the periodic states (a) and (b). The 
residence time T (the reactor volume divided by the total flow 
rate) was 0.104,0.098, and 0.097 h in (a)-(c), respectively. From 
ref 16. 

rate of the feed chemicals was maintained constant and 
the reaction behavior was monitored with bromide ion 
specific and platinum wire electrodes. For some range 
in flow rate, periodic oscillations in the concentrations 
were observed, as illustrated in Figure la. (This figure 
is from one of their later experiments.16) However, for 
another range in flow rate, chaotic (irregular) oscilla- 
tions were observed, as illustrated in Figure lb. The 
chaotic behavior persisted over about a 10% range in 
flow rate before there was a transition back to periodic 
oscillations. 

Subsequent experiments on the BZ reaction1626 have 
shown that periodic-chaotic sequences are common. In 
these sequences two periodic states lie to either side (in 
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flow rate) of a chaotic regime. Typically, one of the 
periodic states has m oscillations per period and the 
other has m + 1 oscillations per period, and the chaotic 
state that is bracketed by these two periodic states 
appears to be a random mixture of the two periodic 
states. Figure 1 illustrates this behavior: the chaotic 
state in (b) appears to be a mixture of periodic states 
with two oscillations per period (Figure la) and three 
oscillations per period (Figure IC). 

In the early experiments the term chaotic was used 
when (1) the time series looked irregular,15J7J8 (2) the 
power spectra of the concentration time series contained 
broad-band noise that was well above the instrumental 
noise level found for the periodic states,21v22 and (3) the 
autocorrelation function of the concentration decayed 
to zero for large t i m e ~ . ’ ~ > ~ l  However, these measures 
could characterize random noise as well as chaos. In 
fact, the observed irregular behavior could plausibly be 
interpreted as arising from random fluctuations in the 
flow rate or other control parameters, which would re- 
sult in a random switching of the system from one to 
another of the adjacent periodic states. Even though 
the range in flow rate in which the irregular behavior 
was observed appeared to be large compared to fluc- 
tuations in the pumping rate, this argument cast rea- 
sonable doubt on the existence of deterministic non- 
periodic behavior in a well-controlled chemical system. 

These experimental findings motivated numerical 
studies of models of the BZ reaction. However, these 
simulations yielded sequences involving only periodic 
states, but these states were found to be very similar 
to the ones observed in the periodic-chaotic sequence 
(see, e.g., ref 13). No chaos was observed in these sim- 
ulations, at least through a visual inspection of the time 
series. (In section 4.2 we shall see the full significance 
of this remark.) Thus, a reasonable conclusion, reached 
in 1978, was that13 “the difference between experiments 
and simulations suggests that the chaotic behavior ob- 
served experimentally may result from fluctuations too 
small to measure in any other way.” Later work ap- 
peared to support this c o n c l ~ s i o n . ~ ~ ~ ~ ~ ~ ~ ~  
3. Dynamical Systems Theory: Hints for 
Identifying Low-Dimensional Deterministic 
Chaos 

Theoretical and numerical studies of deterministic 
chaos were a rapidly growing area of nonlinear physics 
by 1980, and the knowledge gained there provided new 
tools for experimentalists to use in the analysis and 
understanding of nonperiodic data.1-3 We will describe 
two ideas that have proved to be especially fruitful. 

3.1. Analysis of Experimental Data: Construc- 
tion of Phase Space Portraits. Any dynamical sys- 
tem at an instant of time can be described by a single 
point in an appropriate multidimensional phase space. 
The temporal evolution of the system is then given by 
the trajectory of that point in phase space. Periodic 
behavior is given by a closed curve called a limit cycle. 
A chaotic state is described by an irregular trajectory, 
called a strange attractor. 

For a chemical reaction with n species the n-dimen- 
sional phase space coordinates could be the concen- 
trations of the n species. The measurement of the time 
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Figure 2. Graphs showing the analysis of chaotic time series data. 
(a) Bromide ion electrode potential time series B(t).  (b) A two- 
dimensional projection of the phase space attractor constructed 
from the time series B(t+T) vs B( t ) ,  where T = 8.8 s. (c) A 
one-dimensional map for the strange attractor shown in (b), 
constructed by plotting as ordered pairs [X,, X,+l] the successive 
values of the ordinate B(t+T) in the portrait when the orbit crosses 
the dashed line. From ref 33. 

dependence of the concentrations of all n chemical 
species would be an extremely difficult task, but for- 
tunately the application of a 1936 theorem29 makes it 
possible to construct a multidimensional phase space 
portrait from time series measurements of a single 
variable, B(t). The coordinates of a point in phase space 
are obtained from time delay values of the original time 

[B(t), B(t+T), B(t+2T), ...I, where the time 
delay T is arbitrary for noiseless data. For real (i.e., 
noisy) data there is an optimum choice of T, as dis- 
cussed by Fraser and Swinney;32 the optimum delay is 
typically one-tenth to one-half the mean orbital period. 

(29) Whitney, H. Ann. Math. 1936, 37, 645. 
(30) Packard, N. H.; Crutchfield, J. P.; Farmer, J. D.; Shaw, R. S. 
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The time delay method was used to construct phase 
portraits for data obtained in Texas by Roux et al.23-25 
for another periodic-chaotic sequence, observed for 
similar chemical concentrations but much lower flow 
rates than in the experiments of Hudson et al.16 Time 
series data for a chaotic state are shown in Figure 2a, 
and a two-dimensional projection of a phase space at- 
tractor constructed from these data is shown in Figure 
2b. If the attractor is considered in t h e e  rather than 
two dimensions, the intersection of the orbits with a 
plane approximately normal to the orbits yields a set 
of points that, within the experimental resolution, lie 
along a smooth curve. Such a Poimar& section dem- 
onstrates the low-dimensional nature of this chaotic 
state-the orbits lie approximately on a two-dimen- 
sional sheet. 

Further insight into the dynamics can be achieved by 
constructing a one-dimensional map: let the successive 
intersections of the ordinate B(t+T) of the orbits with 
the dashed line in Figure 2b have values called X1, X2,  
..., X,, Xn+l,  .... A plot of X,,, vs X ,  is shown in Figure 
2c: the points fall on a smooth curve, a one-dimensional 
map. Thus, even though the behavior is nonperiodic 
and has a power spectrum with broad-band noise, the 
system is nevertheless completely (within the experi- 
mental resolution) deterministic!-for any X,, the map 
gives the next value, Xnfl. 

A hallmark of a strange attractor is exponential sep- 
aration of nearby points on the attractor. Since a point 
on an attractor represents the entire physical system, 
exponential separation of nearby points on chaotic at- 
tractors means that systems that are initially nearly 
identical will inevitably evolve differently at long times. 
Hence, even though chaotic behavior is deterministic, 
long-term prediction of the state of the system is im- 
possible! The quantity that characterizes the long-term 
separation rate of nearby points is the largest Lyapunov 
exponent; it is negative for a time-independent state 
of a system, zero for a periodic or multiperiodic state, 
and positive for a chaotic ~ ta te . l -~  A method has been 
developed for computing the largest Lyapunov expo- 
nent for time series data, and by use of this method the 
value of the exponent for the data in Figure 2 was found 
to be p o s i t i ~ e . ~ ~ ~ ~ ~  The exponential separation of 
nearby points cannot continue indefinitely (for example, 
none of the chemical concentrations can become infi- 
nite); therefore, the attracting set for strange attractors 
always has many folds. This folding, which results in 
a fractal (noninteger) dimension of the attractors, was 
directly observed for the data in Figure 2.33 
3.2. Universal Dynamics. According to dynamical 

systems theory there are certain routes from regular to 
chaotic dynamics that are common in diverse systems. 
Some of these universal routes have been observed in 
recent experiments1v2-studies of convection, semicon- 
ductors, lasers, etc.-and these routes have also been 
found in chemical  experiment^.^ 

The best known and best understood route to chaos 
is through period doubling: the period of oscillation 
successively doubles in an infinite sequence of transi- 
tions that occurs as a control parameter is varied. The 
distance in control parameter between successive 
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I 20 minutes ' 
Figure 3. Bromide ion electrode potential time series illustrating 
a period doubling sequence. (a) The original periodic state (7 = 
0.725 h). (b) The period has doubled; the waveform now repeats 
after every two oscillations (7 = 0.773 h). (c) The has doubled 
again; the waveform now repeats after every four oscillations (7 

= 0.803 h). The dots above the time series are separated by one 
period. From ref 40. 

transitions decreases geometrically at  a universal rate; 
hence the sequence The accumulation 
point for the sequence marks the onset of chaos. 

Period doubling is a generic property of systems de- 
scribed by a one-dimensional map with a single extre- 
mum.% The map in Figure 2c is of this type; therefore, 
it is not surprising (at least not now) that the chaotic 
state in Figure 2 is reached through a period doubling 
s e q u e n ~ e . ~ ~ f ~ , ~ ~  Data illustrating this sequence are 
shown in Figure 3. 

Another aspect of universality is the behavior found 
in the chaotic region beyond the end of a period dou- 
bling sequence. For a large class of mathematical 
models this chaotic regime contains an infinite number 
of periodic states (windows) that occur in a certain 
order-this is known as the universal sequence.38 A 
large number of the distinct periodic states have been 
found in experiments on the regime that contains the 
chaotic state shown in Figure 2, and these periodic 
states have been found to have the same properties and 
occur in the same order as the states of the universal 
s e q u e n ~ e . ~ ~ * ~  The striking correspondence between the 
very complicated dynamics of the universal sequence 
and a sequence observed in experiments on the BZ 
reaction is alone strong evidence that deterministic 
chaos occurs in nonequilibrium chemical reactions. 

Another kind of behavior often observed in nonlinear 
systems is intermittency, where regular oscillations are 
interrupted by occasional bursts of noise. At  the onset 
of chaos these bursts are infinitely far apart in time, but 
as a control parameter is varied beyond onset, the 
bursts become more and more frequent. Pomeau and 
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Figure 4. These laboratory data illustrate the transition from 
singly periodic behavior, where the phase space attractor is a limit 
cycle, to doubly periodic (quasi-periodic) behavior, where the 
attractor is a torus with frequency ratio f i / f i  = 1/30. Time series, 
phase portraits, and Poincar6 sections are shown for two values 
of the residence time: T = 0.44 h in (a), (c), and (e), and 7 = 0.42 
h in (b), (d), and (f). From ref 46. 

Mannevi1le4l have identified three distinct types of in- 
termittency, and two types have been observed in ex- 
periments on the BZ r e a ~ t i o n . ~ ~ ~ ~ ~  

Theoretical studies have shown that chaotic dynamics 
may also emerge from a regime with two incommensu- 
rate frequencies (frequencies whose ratio is an irrational 
number).44 Recently, such two-frequency quasi-peri- 
odicity has been discovered in the BZ reaction.& It was 
found that, following a transition to a periodic 
the resulting limit cycle underwent a secondary tran- 
sition to a quasi-periodic state where the second fre- 
quency corresponded to a slow modulation of the am- 
plitude of the initial periodic oscillations, as illustrated 
in Figure 4. With further change in the control pa- 
rameter, the inner part of the toroidal phase space at- 
tractor shrank to a thin tube, and finally the torus 
disappeared, leaving a fixed point attractor on its axis.& 
For other experimental conditions, a transition to a 
chaotic state was observed to occur through a wrinkling 
of the 
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The observations in experiments on the BZ reaction 
of routes to chaos that have been well-established in 
dynamical systems theory provide very strong evidence 
for the existence of low-dimensional deterministic 
nonperiodic behavior-chaos-in nonequilibrium 
chemical reactions. Despite this evidence, doubts about 
the existence of chaos persist, largely because chaotic 
states have not been found61 in most simula- 
tions.P6J3~27~28 We will now describe some recent theo- 
retical results that reconcile these legitimate doubts 
with the experimental observations. 

4. Insights from Simulations 
4.1. Simulations with Oregonator-Type Models. 

One reduction of the original 20-variable Field- 
Koros-Noyes modelg of the BZ reaction leads to the 
skeletal scheme given by reactions Rl-R9 with nine 
intermediate  specie^,^^^^^ where R. is an oxidized de- 
rivative of malonic acid (MA), P is an inert organic 
product, and BrMA is bromomalonic acid. The con- 
centrations of both bromate and cerous ions are as- 
sumed to be constant in the reactor; only the input flow 
of Br- is taken into account in the calculations. 

Br03- + Br- + 2H+ HBr02 + HOBr (Rl) 

(R2) 

(R3) 

Br03- + HBr02 + H+ E 2BrO2- + H20 (R4) 

(R5) 

(R6) 

037) 

(R8) 

R. + Ce(IV) -L Ce(II1) + P (R9) 

Although the numerical results presented in this 
paper have been obtained with this particular reaction 
scheme, we should emphasize that this particular model 
is only one among a number of reasonably realistic 
models that have been proposed to describe the dy- 
namics of the BZ reaction. 

Reactions Rl-R9 translate into a system of seven 
ordinary differential equations, which when simulated 
on a computer" yield a periodic-chaotic sequence sim- 
ilar to the one observed in the Texas experiments; for 
example, the time series, attractor, and one-dimensional 
map shown in Figure 5 compare fairly well with the 
corresponding experimental ones shown in Figure 2. 
Furthermore, for the model as well as in the experi- 
ments the transitions from the periodic to the chaotic 
regimes all occur by period d o ~ b l i n g , ~ ~ ~ ~ ~  and the suc- 
cessive periodic regimesa," differ by the addition of one 
more small-amplitude oscillation per period of the time 

HBr02 + Br- + H+ .-% 2HOBr 

HOBr + Br- + H+ --% Br2 + H20 

k4 

k-4 

2HBr02 2 HOBr + Br03- + H+ 

Br02. + Ce(II1) + H+ 2 Ce(1V) + HBr02 

HOBr + MA -!l, BrMA + H20 
BrMA + Ce(1V) 2 Br- + R. + Ce(II1) + H+ 

(52) Ringland, J.; Turner, J. S. Phys. Lett. A 1984, 105, 93. 
(53) Richetti, P.; Ameodo, A. Phys. Lett. A 1985, 109, 359. 
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Figure 5. A chaotic state found in a numerical simulation of a 
7-variable model (Rl)-(R9) of the kinetics of the BZ reaction: (a) 
time series, (b) strange attractor, and (c) one-dimensional map 
with X = log [Ce(IV)]. From ref 54. 

series. Simulations for a similar model, one with seven 
species,13 have yielded a transition from periodic to 
quasi-periodic just as was found in the ex- 
periments described in section 3.2 (see Figure 4). 

4.2. Small-Scale Chaos. Experiments and simula- 
tions on the BZ reaction often yield, in addition to 
periodic-chaotic sequences and quasi-periodicity, se- 
quences in which there appear to be abrupt transitions 
from one multipeaked periodic state to another. No 
chaos has been evident in  experiment^^^,^^@ on the 
latter sequences, and previous s i m u l a t i o n ~ ~ J ~ ~ ~ ~ ~ ~  have 
also yielded transitions that appear to be directly from 
one periodic state to another without any intervening 
chaos. However, a new of the 7-variable model 
(Rl)-(R9) shows that chaos can indeed occur in the 

(55) Barkley, D.; Ringland, J.; Turner, J. S., J. Chem. Phys. 1987,87, 
3812. 

(56) Maselko, J.; Swinney, H. L. Phys. Scr. 1984, 52, 269; J .  Chem. 
Phys. 1986, 85, 6430; Phys. Lett. A 1987, 119, 403. Swinney, H. L.; 
Maselko, J. Phys. Reu. Lett. 1985, 55, 2366. 
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Figure 6. The possibility of chaos on a small scale, a scale too 
small to be observable in laboratory experiments, is illustrated 
by these results from a numerical study of a 7-variable model 
(Rl)-(R9). The time series in (a), although apparently periodic, 
is actually chaotic: the one-dimensional map in (c), deduced from 
a Poincar6 section for the attractor in (b), reveals the presence 
of a very small fluctuation in the value s of the ammplitude of 
the small-amplitude oscillation that immediately precedes the 
large-amplitude oscillation. The map demonstrates that these 
nonperiodic fluctuations in amplitude are deterministic: for any 
Xi, the map gives Xi+l, where X i  is the amplitude of ith occurrence 
of the third of three small-amplitude oscillations. From ref 54. 

neighborhood of the transition between different per- 
iodic states, but this chaos occurs on a very small scale, 
as Figure 6 illustrates: the time series in Figure 6a 
appears on first inspection to be periodic with four 
oscillations per period, but on closer inspection it can 
be seen that the amplitude of the small peaks that 
precede each large-amplitude oscillation varies irregu- 
larly by a very small amount. The one-dimensional 
map in Figure 6c, constructed from the phase portrait 
in Figure 6b, demonstates that the small irregularities 
are deterministic; as we have discussed, such a map is 
a hallmark of chaos. The small-scale chaos in Figure 
6, in contrast to the large scale chaos in Figure 2, would 
be extremely difficult to observe directly in experi- 
ments, and even in simulations a definitive identifica- 
tion of the chaos is possible only by exploiting tools 
from dynamical systems theory. 

Only one frequency is associated with the dynamics 
of the large-scale chaos shown in Figures 2 and 5,53357 

(57) Argoul, F.; Arneodo, A.; Richetti, P. Phys. Lett. A 1987,120, 269. 
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Figure 7. Waveforms in (a) and (b) and the phase portraits in 
(c) and (d) exhibit the spiraling in and spiraling out often observed 
for chaotic as well as periodic states in the BZ reaction: (a) and 
(c) illustrate a periodic state found in a numerical study of a 
7-variable model (Rl)-(R9); (b) and (d) illustrate respectively a 
periodic time series and a chaotic phase portrait obtained in 
experiment.?.. (a) and (c) from ref 54, (b) from ref 56, and (d) from 
ref 46. 
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Figure 8. Devil’s staircase obtained in a simulation of the 7- 
variable model (Rl)-(R9). From ref 54. 

but the states that have small-scale chaos are reminis- 
cent of dynamics with two characteristic frequencies;% 
this is suggested by the convergent and divergent spi- 
raling46*48i54 that can be seen in time series and phase 
portraits such as those in Figures 6a,b and 7. However, 
this behavior, although characterized by two frequen- 
cies, is periodic rather than quasi-periodic (as in Figure 
4a) because the two frequencies are locked together in 
rational ratios for finite ranges in control parameter; 
these frequency-locked states are readily apparent in 
the experiments and simulations. The frequency-locked 
states can be labeled by a winding number, which can 
be computed as  follow^:^^^^* in a periodic state with a 
total of Nt oscillations per period, and with Ni changes 
per period from a large-amplitude to small-amplitude 
oscillation, the winding number is Ni/N,. Thus, for 
example, the periodic state in Figure 7b has a total of 
26 oscillations per period and there are 6 changes per 
period from large to small amplitude, hence the winding 
number of 6/26. 

A succession of frequency-locked periodic states was 
observed in experiments by Maseko and Swinney56 and 

(58) Argoul, F. Bordeaux Doctoral Thesis, 1986. 
(59) This winding number is defined differently from the firing num- 

ber discussed in ref 56. 
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by Argoul et d.*@ and in simulations of the 7-variable 
model (Rl)-(R9).% The winding numbers for sequences 
of frequency-locked states form a “devil’s 
when plotted as a function of a control parameter, as 
illustrated in Figure 8. In the simulations of the 
model% chaotic states were unambiguously observed, 
but only for very narrow control parameter ranges, and 
the chaotic nature of the state was localized on a very 
small part of the trajectory. However, observation of 
a devil’s staircase with overlapping steps can be con- 
sidered from dynamical systems theory to provide 
strong evidence for the existence of chaos in the ex- 
periments and  simulation^.^^^^^^^^ 

In summary, it is now clear why chaos could have 
been present yet undetected in past experiments and 
numerical simulations that showed what appeared to 
be direct transitions from one periodic state to another: 
the domain of existence of chaos could have been too 
small to be seen, and moreover, small fluctuations in 
the amplitude of one (or more) of the many oscillations 
per period in a multipeaked waveform would naturally 
be interpreted as noise. For example, for a complex 
state like the one in Figure 7b, many full cycles of 26 
oscillations per period would be required to determine 
the possible chaotic nature of the dynamics. 

5. Conclusions 
We have presented evidence for the existence of 

low-dimensional chaotic dynamics in the BZ reaction. 
Chemical kinetics is well-suited for studies of chaos 
because the behavior is often clearly nonperiodic. In 
fact, the first experimental strange attractor and one- 
dimensional map were extracted from laboratory data 
obtained in chemical experiments. Tools from dynam- 
ical systems theory and the observation of routes to 
chaos that are well-established theoretically have pro- 
vided evidence for chaos in many chemical experiments. 
Thus, the evidence for chaos when it occurs on a large 

scale is unequivocal. Surprisingly, our simulations have 
also revealed chaotic behavior even in situations that 
at  first glance appear to be periodic: the chaotic dy- 
namics occurs on a very small scale, a scale that could 
be very difficult to resolve in the laboratory. Although 
such small scale chaos was definitely proved for a time 
series obtained from a simulation, even in a simulation 
such chaos might easily go unnoticed or dismissed as 

round-off error; such nonperiodic behavior, if it were 
noticed, could not be understood without the recently 
developed tools of dynamical system theory. Thus, 
behavior identified as periodic in some past simulations 
may have in fact been chaotic. 

All of the strange attractors that we have discussed, 
obtained from both simulations and experiments, can 
be considered to be embedded in a three-dimensional 
space. Furthermore, although space has not permitted 
a discussion here, we should at least mention the subject 
of normal forms,6O which are the simplest nonlinear 
equations that describe the interaction of a few insta- 
bilities (for example, an oscillatory instability and the 
hysteresis instability that is associated with bistability). 
A recent analysis of normal forms has shown that a 
system of coupled differential equations with only three 
variables can describe most of the dynamics found in 
the BZ reaction, including quasi-periodicity and large- 
and small-scale chaos.54 Thus, the reduction of the 
original Field-Koros-Noyes scheme involving some 20 
species to some 3-variable skeletal mechanism (like the 
Oregonato) appears to be justified. But we have to be 
very careful at  this point. The three variables in the 
normal form, unlike the three variables in the Orego- 
nator, do not represent three species involved in the 
reaction. Rather, the normal form variables are non- 
linear combinations of the original N species (N 2 20). 
Thus, the normal form analysis specifies the appro- 
priate three-dimensional subspace (in the N-dimen- 
sional phase space) on which the dynamics is confined 
asymptotically. 

In conclusion, experimental, numerical, and theo- 
retical evidence demonstrates the existence of chaos and 
that the chaos can be understood in terms of the 
chemical kinetics and the interaction of a few basic 
instabilities known to occur in the BZ reaction. 
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